赣州停车场升降柱一套多少钱
在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,字符识别的性。车牌识别结果决策模块识别结果决策模块,具体地说,决策模块利用一个车牌经过视野的过程留下的历史记录,对识别结果进行智能化的决策。其通过计算观测帧数、识别结果稳定性、轨迹稳定性、速度稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是继续跟踪该车牌,还是输出识别结果,或是拒该结果。这种方法综合利用了帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和性。
对车牌图像进行图像形态学操作由于成像系统、传输介质、记录设备等的不完善,以及天气情况的变化等,车牌图像往往受到多种噪声的污染。在经过二值化处理的车牌图像上,会出现一些与要研究的对象(即车牌区域)不相关的孤立点或者像素块,扰乱图像的研究对象,影响对车牌区域的提取、分割等操作。于是要构造一种有效抑制噪声的滤波器来有效的去除目标和背景中的噪声,同时,能够很好地保护车牌区域的形状、大小及特定的车牌纹理特征。 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。
作为智能交通系统中的重要组成部分之一的车牌自动识别技术,目前已被广泛应用于城市道路监控、高速公路收费与监控、小区与停车场出入口管理、公安治安卡口等场合,成为研究的热点。车牌识别技术是利用计算机等辅助设备进行的自动汽车牌照自动识别就是在装备了数字摄像设备和计算机信息管理系统等软硬件平台的基础,通过对车辆图像的采集,采用的图像处理、模式识别和人工智能技术,在图像中找到车牌的位置,提取出组成车牌号码的字符图像,再识别出车牌中的文字、字母和数字,给出车牌的真实号码。
车牌识别系统的好处
当开车驶入停车场时,车牌识别系统会自动抓拍车辆的车牌信息,通过信息传递,对于授权的车辆道闸自动开闸,特别是对于车流量大的场所,车牌识别开闸速度快,车主可以快速进入停车场。