安徽车行升降柱定制
对车牌识别图像进行预处理在车牌定位之前一定要对车牌识别图像做预处理,做完预处理后再进行车牌的定位、分割、识别等部分。因为车牌识别得到的图像可能存在较多噪声,或着图像对比度不够、车牌部分被挡住、有污点、变脏、模糊褪等对字符区域干扰,导致定位算法实现起来会比较困难。所以,对车牌识别图像进行预处理可以大大提高车牌识别的概率。 在进行车牌识别系统的安装之前,需要先明确所需的设备和材料,以及安装位置和数量。一般而言,车牌识别系统主要包括摄像头、计算机、显示器等设备,同时需要使用电线、螺丝、固定架等材料。在安装之前,需要仔细测量安装位置的大小和距离,以确保设备可以覆盖需要监控的区域。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
平时读卡器不断发出功率的射频信号,发送给感应识别卡,并接受从感应识别卡上送回的识别编码信息,将这编码信息反馈给系统控制器辨识。由摄像机立柱、彩摄像机、视频捕捉卡和补光灯组成,它利用入门处摄像机加辅助光照明拍摄下驶入车辆的车牌号,并存入控制主机硬盘中,当车辆驶出时,出口摄像机再次拍摄下驶入车辆的车牌号,并与硬盘中所存停车车牌号比对,判断无误后,方能驶出停车场。当然若能实现车牌与车型及颜的复合识别则更加,才能车主以“掉包”方式将自己的车开入而将别人的车开出这种窃车作案。
对车牌图像进行图像形态学操作由于成像系统、传输介质、记录设备等的不完善,以及天气情况的变化等,车牌图像往往受到多种噪声的污染。在经过二值化处理的车牌图像上,会出现一些与要研究的对象(即车牌区域)不相关的孤立点或者像素块,扰乱图像的研究对象,影响对车牌区域的提取、分割等操作。于是要构造一种有效抑制噪声的滤波器来有效的去除目标和背景中的噪声,同时,能够很好地保护车牌区域的形状、大小及特定的车牌纹理特征。 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。