益阳车行闸门生产厂家
贝叶斯分类器的特点是: 贝叶斯分类并不把一个对象对地指派给某一类,而是通过计算得出属于某一类的概率,具有大概率的类便是该对象所属的类; 一般情况下在贝叶斯分类中的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是的属性都参与分类; 贝叶斯分类对象的属性可以是离散的、连续的,也可以是混合的。 贝叶斯定理给出了小化误差的解决方法,可用于分类和预测。但在实际中,它并不能直接利用,它需要知道据的确切分布概率,而实际上我们并不能确切的给据的分布概率。因此我们在很多分类方法中都会作出某种假设以逼近贝叶斯定理的要求。 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
基于分类器的字符识别基于分类器的字符识别,是目前应用较广的一种车牌识别方式。其主要的思路是通过对样本数据的学,达到自动将数据分类到已知类型。分类器其实是一种数学模型,目前有很多类型的分类器,包括Bayes分类器、决策树模型、BP神经网络分类器等。 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是小错误率意义上的优化。
在一些单位,该应用还可以与车辆调度系统结合,自动客观地记录本单位车辆的车辆情况。车牌识别管理系统采用车牌识别技术提高进出效率。——自动放行,进入指定牌照信息输入系统,并自动读取车辆牌照,查询内部数据库。
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,只输出一个识别结果。车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是唯一的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。