南阳无感支付闸门供应厂家
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前Z新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。
通过对车牌图像的灰度处理、边缘检测、二值化、图像形态学操作定位出车牌的候选区域,接着利用车牌的特征,如长宽比、像素比等,从候选区域中定位出车牌车牌字符分割算法的研究车牌字符分割就是对已经定位出的车牌区域内的车牌字符进行分割,从而获取车牌上的字符,是车牌字符识别的前提和准备。车牌字符分割的好坏,直接影响到识别效果的好坏。在车牌识别系统中,由于车牌污染、背景复杂、光照不均匀、车牌发生倾斜、边框影响以及间隔符等因素影响,很难找到一种普遍使用的分割方法。
剩下的字符都是英文字母和阿拉伯数字,这些字符不存在不连通性的问题,于是,仅仅利用个阈值 threshold 1就可以分割出车牌剩下的字符。当车牌的个汉字字符被分割出来之后,继续扫描车牌区域图像,当某一列的像素值为 255 的像素个数开始大于阈值 threshold 1时,这一列就是车牌字符开始的位置,当某一列的像素值为 255 的像素的个数开始小于阈值 threshold 1时,这一列就是车牌字符的结束位置。如此重复的下去,直到把车牌剩下的字符也分割出来为止。
Sobel边缘检测算子Sobel算子是根据邻域像素与当前像素的距离有不同的权值,强调中心像素的对边邻域像素对其的影响,而消弱4个对角近邻像素的作用。图像中每一个像素点这两个核做卷积,一个卷积核对图像垂直边缘响应大,而另一个则对水平边缘响应大,取两个卷积之中的大值作为该像素点的输出值。这样使得Sobel算子对噪声有抑制作用,因此不会出现很多孤立的边缘像素点,不过Sobel算子对边缘的定位不是很,图像的边界宽度往往不止一个像素,不适合对边缘定位准确性要求很高的应用。与Prewitt相似,Sobel算子也是通过像素平均来实现的,也有一定的抗噪能力。值得注意的是它们都不是各向同性的,所以它们检测出来的边缘并不是连通的,会有一定程度的断开。