珠海全自动车牌识别供应厂家
应用贝叶斯网络分类器进行分类主要分成两阶段。阶段是贝叶斯网络分类器的学,即从样本数据中构造分类器,包括结构学和CPT学;第二阶段是贝叶斯网络分类器的推理,即计算类结点的条件概率,对分类数据进行分类。这两个阶段的时间复杂性均取决于特征值间的依赖程度,因而在实际应用中,往往需要对贝叶斯网络分类器进行简化。根据对特征值间不同关联程度的假设,可以得出各种贝叶斯分类器,Naive Bayes、TAN、BAN、GBN就是其中较典型、研究较深入的贝叶斯分类器。
车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。车辆检测跟踪模块车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统摒弃了以往的算法思路,实现了一种基于学的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。
车牌识别进出停车场无需刷卡、无需停车,加快车辆进出场速度,避免拥堵,减少鸣笛噪音,省去了车主停车刷卡的步骤,节省了车主停车时间,同时也避免了车主因卡丢失、卡损坏需要换卡、补卡的烦恼。
该算法的步骤是,首先建立模板库,将待识别的字符进行二值化并将其归一化操作,然后作为输入模式的字符与的模板进行匹配,选择佳匹配作为结果。算法的优点是,在预处理后的图片质量较高、车牌的倾斜程度较低、车牌的纹理特征清晰的情况下,这种算法识别的准确率较高,但是对字符细节信息的忽略导致了在识别相似字符时容易出错。在实际的车牌识别系统中获取的车牌,往往由于拍摄角度的不同、车牌污损、光照不均等原因造成了二值化后的字符会出现形变、粘连、断裂、细节模糊等情况,这些原因导致了模板匹配在车牌字符识别上的限性,尤其是停车场车牌识别系统。停车场环境下,车牌图像受到光照的影响较大,为了提高字符识别的准确率,通常在停车场车牌识别系统中很少采用这种算法。