山西汽车车牌识别生产厂家
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前Z新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。
摄像机共用性硬识别系统:停车场管理系统可与监控系统共用摄像机,对系统影响。软识别系统:不可共用,否则对停车场收费系统稳定性和识别率造成严重影响。兼容能力硬识别系统:无需工业IO卡的支持,借道停车场控制系统(PLC)可直接与各类IC、ID、纸票等类型停车场无缝兼容,实现车牌号与卡号一致才能进出的自动识别、自动打印车牌号等功能。软识别系统:依赖IO卡进行车辆检测、开关道闸等动作,与停车场系统只是软件嵌入关系,硬件无联系。工程量大,用线多,稳定度差。
贝叶斯分类器的特点是: 贝叶斯分类并不把一个对象对地指派给某一类,而是通过计算得出属于某一类的概率,具有大概率的类便是该对象所属的类; 一般情况下在贝叶斯分类中的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是的属性都参与分类; 贝叶斯分类对象的属性可以是离散的、连续的,也可以是混合的。 贝叶斯定理给出了小化误差的解决方法,可用于分类和预测。但在实际中,它并不能直接利用,它需要知道据的确切分布概率,而实际上我们并不能确切的给据的分布概率。因此我们在很多分类方法中都会作出某种假设以逼近贝叶斯定理的要求。 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
应用贝叶斯网络分类器进行分类主要分成两阶段。阶段是贝叶斯网络分类器的学,即从样本数据中构造分类器,包括结构学和CPT学;第二阶段是贝叶斯网络分类器的推理,即计算类结点的条件概率,对分类数据进行分类。这两个阶段的时间复杂性均取决于特征值间的依赖程度,因而在实际应用中,往往需要对贝叶斯网络分类器进行简化。根据对特征值间不同关联程度的假设,可以得出各种贝叶斯分类器,Naive Bayes、TAN、BAN、GBN就是其中较典型、研究较深入的贝叶斯分类器。