北京汽车升降柱定制
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前Z新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态学运算得到车牌的候选区域,利用车牌特征去除伪车牌。
百万高清摄像机,辨认率更高; 车牌识别系统不仅运用于停车管理,也运用于城市交通管控,常见的问题有以下几种情况:对污损的车牌识别效果不佳车牌识别系统的环境适应性需加强高分辨率和识别速度之间的矛盾车牌定位和车牌字符的分割停车场车牌识别系统出现问题的解决方法如下:感光部件对外部环境的处理外部环境是影响车牌识别的主要因素,在采集车辆图像时,由于使用环境的光线变化对车牌识别抓拍的图像影响很大。所以要解决因环境问题造成车牌识别的识别率低下,要依靠车牌识别摄像机的感光部件对外部环境的处理。
基于分类器的字符识别基于分类器的字符识别,是目前应用较广的一种车牌识别方式。其主要的思路是通过对样本数据的学,达到自动将数据分类到已知类型。分类器其实是一种数学模型,目前有很多类型的分类器,包括Bayes分类器、决策树模型、BP神经网络分类器等。 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是小错误率意义上的优化。