哈尔滨全自动闸门定制
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态学运算得到车牌的候选区域,利用车牌特征去除伪车牌。
对车牌识别图像进行预处理在车牌定位之前一定要对车牌识别图像做预处理,做完预处理后再进行车牌的定位、分割、识别等部分。因为车牌识别得到的图像可能存在较多噪声,或着图像对比度不够、车牌部分被挡住、有污点、变脏、模糊褪等对字符区域干扰,导致定位算法实现起来会比较困难。所以,对车牌识别图像进行预处理可以大大提高车牌识别的概率。 在进行车牌识别系统的安装之前,需要先明确所需的设备和材料,以及安装位置和数量。一般而言,车牌识别系统主要包括摄像头、计算机、显示器等设备,同时需要使用电线、螺丝、固定架等材料。在安装之前,需要仔细测量安装位置的大小和距离,以确保设备可以覆盖需要监控的区域。
在一些单位,该应用还可以与车辆调度系统结合,自动客观地记录本单位车辆的车辆情况。车牌识别管理系统采用车牌识别技术提高进出效率。——自动放行,进入指定牌照信息输入系统,并自动读取车辆牌照,查询内部数据库。
通过对车牌图像的灰度处理、边缘检测、二值化、图像形态学操作定位出车牌的候选区域,接着利用车牌的特征,如长宽比、像素比等,从候选区域中定位出车牌车牌字符分割算法的研究车牌字符分割就是对已经定位出的车牌区域内的车牌字符进行分割,从而获取车牌上的字符,是车牌字符识别的前提和准备。车牌字符分割的好坏,直接影响到识别效果的好坏。在车牌识别系统中,由于车牌污染、背景复杂、光照不均匀、车牌发生倾斜、边框影响以及间隔符等因素影响,很难找到一种普遍使用的分割方法。