湖州无感支付升降柱供应厂家
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜等信息,目前Z新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
基于特征统计匹配算法基于特征统计匹配算法主要原理是先提取输入模式的车牌字符统计特征,再按照一定的规则与所确定的决策函数进行分类判断。字符的统计特征包括像素块数、字符的轮廓数、轮廓的形状等。像素块是指二值化图像中上、下、左、右四个方向上相互连通的白素区域所组成的一个连通区域的像素块,由此可知,汉字字符的像素块大于1,英文字母和数字的像素块数是1。汉字的识别是将字符点矩阵看作是一个整体,根据每个字符的笔画特征点不同,将字符分解为横、竖、撇、捺等一种或几种的组合,经过统计从而得到相应的特征,接着再与字符库中的特征集进行匹配,获取输入字符的识别结果。在实际的应用中,由于外部原因造成了字符常常会出现模糊、倾斜等情况,导致了部分字符无法正确识别。
该算法的步骤是,首先建立模板库,将待识别的字符进行二值化并将其归一化操作,然后作为输入模式的字符与的模板进行匹配,选择佳匹配作为结果。算法的优点是,在预处理后的图片质量较高、车牌的倾斜程度较低、车牌的纹理特征清晰的情况下,这种算法识别的准确率较高,但是对字符细节信息的忽略导致了在识别相似字符时容易出错。在实际的车牌识别系统中获取的车牌,往往由于拍摄角度的不同、车牌污损、光照不均等原因造成了二值化后的字符会出现形变、粘连、断裂、细节模糊等情况,这些原因导致了模板匹配在车牌字符识别上的限性,尤其是停车场车牌识别系统。停车场环境下,车牌图像受到光照的影响较大,为了提高字符识别的准确率,通常在停车场车牌识别系统中很少采用这种算法。