张掖无人值守闸门供应厂家
那么停车场系统车牌识别实现的方式有哪些呢?车牌识别系统实现的方式主要分为两种:一种是静态图像图片的识别,另一种是动态视频流的实时识别。静态图像识别技术的识别较大程度上受限于图像的抓拍质量,为单帧图像识别,目前市场产品识别速度平均为200毫秒;而动态视频流的识别技术适应性较强,识别速度快,它实现了对视频每一帧图像进行识别,增加识别比对次数,择优选取车牌号,关键在于较少的受到单帧图像质量的影响,目前市场产品识别较好的时间为10毫秒。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
对提取的车牌字符特征进行归一化操作从输入的车牌图像中提取的车牌的尺寸不一样,这就造成了分割出来的车牌字符的尺寸不一样,为了的识别车牌字符,在本文中,对车牌字符进行归一化处理,使得经过不同图像获得车牌车牌在字符分割后,所获取的车牌单个字符图像大小都为5×10像素。车牌字符识别算法的研究车牌的字符识别是车牌识别系统能够实现的关键因素,是对经过车牌定位和车牌字符分割后的一个个车牌字符进行识别。车牌识别系统中的字符识别与其它的字符识别相比,有其自身的特点,主要由以下方面的不同:车牌识别系统中字符的字量少,包括汉字、英文字母、数字,并且字型统一,相对于普通的汉字识别难度相对较低;从系统的实用性角度来看,作为一个实时的系统,它要求有较高的识别速度,这就决定了字符识别算法计算;同时,它还要求有很高的识别率,并且限度减少错误识别率。
贝叶斯分类器的特点是: 贝叶斯分类并不把一个对象对地指派给某一类,而是通过计算得出属于某一类的概率,具有大概率的类便是该对象所属的类; 一般情况下在贝叶斯分类中的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是的属性都参与分类; 贝叶斯分类对象的属性可以是离散的、连续的,也可以是混合的。 贝叶斯定理给出了小化误差的解决方法,可用于分类和预测。但在实际中,它并不能直接利用,它需要知道据的确切分布概率,而实际上我们并不能确切的给据的分布概率。因此我们在很多分类方法中都会作出某种假设以逼近贝叶斯定理的要求。 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。