龙岩停车场升降柱一套多少钱
在车牌的字符分割中,有许多因素会对车牌的字符分割造成影响,例如图像的噪声、车牌的定位不、字符的粘连、汉字的不连通等。本文介绍一种改进的水平投影算法,该算法能够克服这些因素造成的不良影响,并且能够准确的分割出车牌,为后续的识别做好准备。为了分割出相互独立的字符,对经过Otsu算法阈值化的灰度图进行分割。以下以改进的水平投影算法为例进行介绍:去除车牌字符的上下边界以外的区域。对灰度化的车牌图像从下向上逐行扫描,并统计出每行的像素值为 255 的像素的个数,当像素值为 255 的像素个数大于 7时(车牌有 7 个字符),认为寻找到车牌字符的下边界。同理,从上向下逐行扫描,能够寻找到车牌字符的上边界。去除车牌字符上下边界以外的区域。去除车牌字符上下边界之后,设车牌的高度为 height,宽度为 width。
由于车牌识别设备一般都是安装在室外,且汽车车身不可能是完全整洁的、无污垢的,车牌上也可能存在泥点、污渍等杂质,因此采集到的图像中难免会存在一些噪声点。这些看似不起眼的噪声点或多或少的都会影响到定位的准确率。
Sobel边缘检测还有另外一种形式,称为Isotropic Sobel算子,该算子具有各向同性的特征,利用加权平均算子,权值反比于邻点与中心点的距离,当沿着不同方向检测边缘时梯度幅度一致, 因此它的位置加权系数更准确,在检测不同方向上的边缘时梯度的幅度一致,但速度较一般Sobel算子要慢一些。 用于边缘检测的算子很多,常用的还有Laplacian边缘检测算子、Canny边缘检测算子等。
对提取的车牌字符特征进行归一化操作从输入的车牌图像中提取的车牌的尺寸不一样,这就造成了分割出来的车牌字符的尺寸不一样,为了的识别车牌字符,在本文中,对车牌字符进行归一化处理,使得经过不同图像获得车牌车牌在字符分割后,所获取的车牌单个字符图像大小都为5×10像素。车牌字符识别算法的研究车牌的字符识别是车牌识别系统能够实现的关键因素,是对经过车牌定位和车牌字符分割后的一个个车牌字符进行识别。车牌识别系统中的字符识别与其它的字符识别相比,有其自身的特点,主要由以下方面的不同:车牌识别系统中字符的字量少,包括汉字、英文字母、数字,并且字型统一,相对于普通的汉字识别难度相对较低;从系统的实用性角度来看,作为一个实时的系统,它要求有较高的识别速度,这就决定了字符识别算法计算;同时,它还要求有很高的识别率,并且限度减少错误识别率。