安顺安全通道闸门定制
对输入的彩图像进行灰度化处理:彩图像包含更多的信息,但是直接对彩图像进行处理的话,系统的执行速度将会降低,储存空间也会变大。彩图像的灰度化是图像处理的一种基本的方法,在模式识别领域得到广泛的运用,合理的灰度化将对图像信息的提取和后续处理有很大的帮助,能够节省储存空间,加快处理速度。边缘检测的方法是考察图像的像素在某个领域内灰度的变化情况,标识数字图像中亮度变化明显的点。图像的边缘检测能够大幅度地减少数据量,并且剔除不相关的信息,保存图像重要的结构属性。在实际的图像分割中,往往只用到一阶和二阶导数进行边缘检测,虽然,在原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶导数操作中就会出现对噪声敏感的现象,三阶以上的导数信息往往失去了应用价值。此外,二阶导数还可以说明灰度突变的类型,在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。为了减少二阶导数对噪声敏感,解决的办法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
基于特征统计匹配算法基于特征统计匹配算法主要原理是先提取输入模式的车牌字符统计特征,再按照一定的规则与所确定的决策函数进行分类判断。字符的统计特征包括像素块数、字符的轮廓数、轮廓的形状等。像素块是指二值化图像中上、下、左、右四个方向上相互连通的白素区域所组成的一个连通区域的像素块,由此可知,汉字字符的像素块大于1,英文字母和数字的像素块数是1。汉字的识别是将字符点矩阵看作是一个整体,根据每个字符的笔画特征点不同,将字符分解为横、竖、撇、捺等一种或几种的组合,经过统计从而得到相应的特征,接着再与字符库中的特征集进行匹配,获取输入字符的识别结果。在实际的应用中,由于外部原因造成了字符常常会出现模糊、倾斜等情况,导致了部分字符无法正确识别。
以上是关于自动识别道闸系统原理的相关知识,希望能给大家带来帮助。如果想了解更多、更全面、更的智能家居小知识,如:道闸系统的工作原理,道闸系统的使用方法,停车场道闸系统的故障处理方法等。自动识别是指在车辆出入场时触发车辆检测器(或者虚拟线圈),系统控制摄像机自动抓拍车头图像(车牌),交由计算机识别出车牌号码。人工识别/重识别入场时出现系统自动识别车牌失败时(车牌有污渍、遮挡、车头角度等问题),可由岗亭操作人员对车辆进行重新识别车牌;如果系统重新识别也出现识别失败时,可以在系统窗口处人工车输入车牌信息,确认后,手动开闸入场。