扬州停车场闸门定制
基于分类器的字符识别基于分类器的字符识别,是目前应用较广的一种车牌识别方式。其主要的思路是通过对样本数据的学,达到自动将数据分类到已知类型。分类器其实是一种数学模型,目前有很多类型的分类器,包括Bayes分类器、决策树模型、BP神经网络分类器等。 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是小错误率意义上的优化。
识别速度:硬识别系统:整车车牌识别速度小于0.4秒,充分满足车流量大时的需要;软识别系统:整车车牌识别速度大于3秒,甚至更长,速度让人忍受。环境适应性硬识别系统:能在夜晚、阴天、雨天等各种光照条件下正常工作;软识别系统:上述条件下,甚至一天的不同时间内,识别准确率起伏很大。车速适应性:硬识别车牌识别系统:车速在0-120Km/H范围内均能稳定识别;应用范围广泛,高速公里使用该类设备。软识别车牌自动识别系统:车速大于40Km/H时,识别率急剧下降,现被引入停车场场系统中,有待进一步完善。
车牌识别进出停车场无需刷卡、无需停车,加快车辆进出场速度,避免拥堵,减少鸣笛噪音,省去了车主停车刷卡的步骤,节省了车主停车时间,同时也避免了车主因卡丢失、卡损坏需要换卡、补卡的烦恼。
对车牌图像进行图像形态学操作由于成像系统、传输介质、记录设备等的不完善,以及天气情况的变化等,车牌图像往往受到多种噪声的污染。在经过二值化处理的车牌图像上,会出现一些与要研究的对象(即车牌区域)不相关的孤立点或者像素块,扰乱图像的研究对象,影响对车牌区域的提取、分割等操作。于是要构造一种有效抑制噪声的滤波器来有效的去除目标和背景中的噪声,同时,能够很好地保护车牌区域的形状、大小及特定的车牌纹理特征。 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。