琼海汽车升降柱定制
原理介绍:车牌自动识别道闸系统对摄像机抓拍到的每帧图像都识别,并自动找到佳识别效果的图像,应用这种方法可以很好地提高抓拍率、识别率,并且能够降低工程的施工难度。大手控制车牌自动识别正是基于这一思想,采用专有的技术,利用高速的识别算法核心对视频流进行逐帧的识别,即对单个车辆进行了多次识别,从而有效克服了现有车牌识别技术存在的许多缺陷。使用连续多帧识别,从工程的角度看,比单帧识别成功的机率要高得多,这是因为连续抓拍的图像的角度、光照不同,识别效果也不尽相同,从理论上讲,只要有一帧清析的图像就有一个好的识别结果。顺科技智能道闸车牌自动识别系统还采用的目标跟踪,以及识别结果佳化等方法,来确保从车流中一个一个地甄别出序列化的车牌。要实现对视频流进行逐帧识别,采用行之有效的高速识别算法,即神经网络算法和模糊算法相结合,否则无法达到实用的效果。对于常用的 768 X 288 高分辩率图像,大手控制车牌自动识别可以在 3 到 10 毫秒内完成的识别过程,并且在多个应用中实施了单台计算机多路的实时识别方案。传统车辆出入管理系统使用卡或票的技术,道闸车牌自动识别是的管理技术,也是目前、智能化的车辆出入管理技术。车牌识别不仅可以实现零耗材管理、解决丢失停车凭问题,而且可以明显提升车辆出入效率、减轻人员的劳动强度。大手控制率先将车牌识别技术融入传统的卡、票车辆管理系统中,有效克服车牌汉字识别不准问题,应用识别率可达 95%以上,且识别时间为 10ms。不仅保留了传统系统稳定、准确、实用的优点,而且提高了系统的工作效率,为管理者节约了时间和成本。带有车牌识别功能的车辆出入管理系统正在市场上迅速地普及,价值、意义很大。
基于模板匹配的字符识别算法匹配就是将不同传感器或同一传感器在不同时间、不同成像条件下对同一景象获取的两幅或者多幅图像在空间上对准,或者根据已有模式在另一幅图像中寻找相应的模式。在遥感图像的处理时需要把不同波段传感器对同一事物的多光谱图像按照像点对应套准,然后根据像点的性质进行分类。如果在不同时间内对同一地面拍摄的两幅图像,经套准后找到其中特征有了变化的像点,就可以用来分析图中那些部分发生了变化,而利用放在一定间距处的两只传感器对同一物体拍摄得到两幅图片,找出对应点后可计算出物体离开摄像机的距离,即深度信息。一般的图像匹配技术是利用已知的模板和某种算法对识别图像进行匹配计算,从而判断图像中是否含有该模板的信息和获取坐标,车牌的字符匹配就是这种匹配技术。即车牌字符匹配的实现方式是计算输入模式的车牌字符与样本之间的相似性,取相似性大的样本为输入样本所属的类别。
智能车牌识别设备安装在内外,记录车辆的车牌号、存取时间,并结合自动门、栏杆机控制设备,实现车辆的自动管理。在停车场,可以自动计时收费,自动计算停车位数,并计算提示时间。停车费的自动管理可以节省人力,提高效率。
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态学运算得到车牌的候选区域,利用车牌特征去除伪车牌。