天门汽车闸门供应厂家
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜等信息,目前Z新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
对车牌识别图像进行预处理在车牌定位之前一定要对车牌识别图像做预处理,做完预处理后再进行车牌的定位、分割、识别等部分。因为车牌识别得到的图像可能存在较多噪声,或着图像对比度不够、车牌部分被挡住、有污点、变脏、模糊褪等对字符区域干扰,导致定位算法实现起来会比较困难。所以,对车牌识别图像进行预处理可以大大提高车牌识别的概率。 在进行车牌识别系统的安装之前,需要先明确所需的设备和材料,以及安装位置和数量。一般而言,车牌识别系统主要包括摄像头、计算机、显示器等设备,同时需要使用电线、螺丝、固定架等材料。在安装之前,需要仔细测量安装位置的大小和距离,以确保设备可以覆盖需要监控的区域。
基于分类器的字符识别基于分类器的字符识别,是目前应用较广的一种车牌识别方式。其主要的思路是通过对样本数据的学,达到自动将数据分类到已知类型。分类器其实是一种数学模型,目前有很多类型的分类器,包括Bayes分类器、决策树模型、BP神经网络分类器等。 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是小错误率意义上的优化。