廊坊停车场车牌识别生产厂家
车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统摒弃了以往的算法思路,实现了一种基于学的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。车牌矫正及精定位模块由于受拍摄条件的限制,图像中的车牌总不可避免存在一定的倾斜,需要一个矫正和精定位环节来进一步提高车牌图像的质量,为切分和识别模块做准备。使用精心设计的图像处理滤波器,不仅计算,而且利用的是车牌的整体信息,避免了部噪声带来的影响。使用该算法的另一个优点就是通过对多个中间结果的分析还可以对车牌进行精定位,进一步减少非车牌区域的影响。
车牌识别系统可以在识别过程中比较数据,并与背景大数据中的可疑车辆进行比较。一旦确定,它可以自动报警并有效协助警察。同时,安装在社区和学校出入口的车牌识别器还可以自动识别内部和外部车辆,从而提高了社区、学校的安全性。
天气环境的影响。在户外使用车牌识别摄像头时,光线过多会导致车牌反射,降低识别率,夜间照明需要辅助照明不足。其次,在大雨、大雪等天气下,车牌识别率比通常略低。埋地感线圈的位置,间隔。地感线圈与路口之间的间隔不宜过近。一是容易撞到车辆。二是会影响车牌识别率,间隔距离保持在2~3米。识别时出现反应缓慢或电脑崩溃、电脑重启的症状。检查车库数据,及时优化需求,检查操作系统的操作系统是否正常运行。如果不正常,需要重新安装系统,检查网络是否稳定,传输速度是否低,需要调整网络速度。
对车牌图像进行图像形态学操作由于成像系统、传输介质、记录设备等的不完善,以及天气情况的变化等,车牌图像往往受到多种噪声的污染。在经过二值化处理的车牌图像上,会出现一些与要研究的对象(即车牌区域)不相关的孤立点或者像素块,扰乱图像的研究对象,影响对车牌区域的提取、分割等操作。于是要构造一种有效抑制噪声的滤波器来有效的去除目标和背景中的噪声,同时,能够很好地保护车牌区域的形状、大小及特定的车牌纹理特征。 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。