襄阳全自动车牌识别定制
车牌识别系统也是基于形态学操作的重要性质,对经过二值化后的车牌图像首行闭运算操作,使得车牌的字符区域连接起来,然后对车牌图像进行开运算操作,来消除车牌上的噪声,得到明亮的车牌区域从候选区域中去除伪车牌并定位出车牌区域 通过对车牌图像的数学形态学运算,图像中剩下少部分的连通区域,即为车牌的候选区域,这些区域包括车牌区域和伪车牌区域,为此,需要从图像中去除伪车牌并定位出车牌。首先,经过对白连通区域的轮廓进行处理得到矩形边界框,再根据我国车牌长宽比的特征,即44:14,考虑到在车牌定位过程中,由于对车牌的数学形态学操作会减少车牌信息以及拍摄所得到的车牌图像中车牌的倾斜等原因,取长宽阈值为2.0-6.0,这样就剔除了长宽比不符合条件的候选区域。 然后,由于对车牌图像的数学形态学操作会减少车牌信息,所以定位出的车牌区域会有可能小于车牌的实际区域,这时,我们就需要对定位出的车牌区域进行放大,在这里,我们对车牌区域进行放大的比例是120%,即对已经定位出的车牌候选区域的边界进行扩大。车牌由七个字符组成,在对候选区域对应的灰度化图像进行边缘检测二值化之后,正常情况下,车牌水平投影区域内每行的边缘点数要大于14,根据经验值,我们取15。在车牌水平投影区域内会出现较大的波峰,该波峰认为是车牌的上下边界,根据实验结果,要求波峰的始点和终点之差大于20小于120,从而得到车牌的上下边界。,根据二值化车牌图像中车牌的纹理特征信息,即在车牌区域范围内会出现明显的梯度变化特征,来确定车牌区域,定位出车牌。在二值化图像中,255代表车牌图像中的边缘信息,0代表非边缘信息。为了更加的定位出车牌和剔除伪车牌,需要对定位出的车牌区域进行筛选,有两个筛选条件,一个是在二值化图像中灰度值为255和灰度值为0的像素比大于0.25,另一个是二值化图像中灰度的跳变次数范围是[5,30]。
车位数自定义设置停车场内停车位的数量可根据停车场的实际情况设置停车场管理系统的总车位数,此处的设置与满位限制功能和按指定车型进行车位统计功能相关联。按指定车型进行车位统计某些停车场分为地面和地下两个区域(场内场),的固定车辆停地下,临时车辆停在地面,余位统计只显示地面临时车的数量情况以提示岗亭收费人员,在此种情况下固定车的刷卡流通就不会同步更新剩余车位的数量显示。此功能可自定义设置选择,被选择的车类型进出场时不会进行车位的统计,未被选择的车类型进出场时才会同步的更新车位统计信息。
智能车牌识别设备安装在内外,记录车辆的车牌号、存取时间,并结合自动门、栏杆机控制设备,实现车辆的自动管理。在停车场,可以自动计时收费,自动计算停车位数,并计算提示时间。停车费的自动管理可以节省人力,提高效率。
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,只输出一个识别结果。车牌识别系统的关键技术及算法车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是唯一的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。