佳木斯无感支付车牌识别定制
该算法的步骤是,首先建立模板库,将待识别的字符进行二值化并将其归一化操作,然后作为输入模式的字符与的模板进行匹配,选择佳匹配作为结果。算法的优点是,在预处理后的图片质量较高、车牌的倾斜程度较低、车牌的纹理特征清晰的情况下,这种算法识别的准确率较高,但是对字符细节信息的忽略导致了在识别相似字符时容易出错。在实际的车牌识别系统中获取的车牌,往往由于拍摄角度的不同、车牌污损、光照不均等原因造成了二值化后的字符会出现形变、粘连、断裂、细节模糊等情况,这些原因导致了模板匹配在车牌字符识别上的限性,尤其是停车场车牌识别系统。停车场环境下,车牌图像受到光照的影响较大,为了提高字符识别的准确率,通常在停车场车牌识别系统中很少采用这种算法。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。车牌识别系统是指能够检测出可监控的车辆,并自动提取车牌信息进行处理的技术。车牌识别是现代智能交通系统的重要组成部分之一,应用广泛。它是基于数字图像处理、模式识别、计算机视觉等技术,对摄像头拍摄的车辆图像或视频序列进行分析,以获得每辆车唯一的车牌号来完成识别过程。
Sobel边缘检测还有另外一种形式,称为Isotropic Sobel算子,该算子具有各向同性的特征,利用加权平均算子,权值反比于邻点与中心点的距离,当沿着不同方向检测边缘时梯度幅度一致, 因此它的位置加权系数更准确,在检测不同方向上的边缘时梯度的幅度一致,但速度较一般Sobel算子要慢一些。 用于边缘检测的算子很多,常用的还有Laplacian边缘检测算子、Canny边缘检测算子等。