陇南车行升降柱生产厂家
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,只输出一个识别结果。车牌识别系统的关键技术及算法车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是唯一的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。
在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,字符识别的性。车牌识别结果决策模块识别结果决策模块,具体地说,决策模块利用一个车牌经过视野的过程留下的历史记录,对识别结果进行智能化的决策。其通过计算观测帧数、识别结果稳定性、轨迹稳定性、速度稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是继续跟踪该车牌,还是输出识别结果,或是拒该结果。这种方法综合利用了帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和性。
百万高清摄像机,辨认率更高; 车牌识别系统不仅运用于停车管理,也运用于城市交通管控,常见的问题有以下几种情况:对污损的车牌识别效果不佳车牌识别系统的环境适应性需加强高分辨率和识别速度之间的矛盾车牌定位和车牌字符的分割停车场车牌识别系统出现问题的解决方法如下:感光部件对外部环境的处理外部环境是影响车牌识别的主要因素,在采集车辆图像时,由于使用环境的光线变化对车牌识别抓拍的图像影响很大。所以要解决因环境问题造成车牌识别的识别率低下,要依靠车牌识别摄像机的感光部件对外部环境的处理。
车牌识别系统的好处
当开车驶入停车场时,车牌识别系统会自动抓拍车辆的车牌信息,通过信息传递,对于授权的车辆道闸自动开闸,特别是对于车流量大的场所,车牌识别开闸速度快,车主可以快速进入停车场。