陕西停车场闸门供应厂家
当车辆出场系统自动识别失败时,可人工干预重新识别或人工修改车牌信息确认后,手动输入车牌关键字匹配车牌号码,系统计时、计费,人工手动开闸。军车、警车、使馆车车辆牌照的识别,识别成功后自动放行(可自行设定需人工确认放行或自动放行)。系统通过车牌为唯一识别标签,一个车牌识别成功后开闸一次,车辆通过地感自动落闸,无车牌或者识别不成功的车辆只能通过人工放行,有效地杜车辆跟车的现象。
原理介绍:车牌自动识别道闸系统对摄像机抓拍到的每帧图像都识别,并自动找到佳识别效果的图像,应用这种方法可以很好地提高抓拍率、识别率,并且能够降低工程的施工难度。大手控制车牌自动识别正是基于这一思想,采用专有的技术,利用高速的识别算法核心对视频流进行逐帧的识别,即对单个车辆进行了多次识别,从而有效克服了现有车牌识别技术存在的许多缺陷。使用连续多帧识别,从工程的角度看,比单帧识别成功的机率要高得多,这是因为连续抓拍的图像的角度、光照不同,识别效果也不尽相同,从理论上讲,只要有一帧清析的图像就有一个好的识别结果。顺科技智能道闸车牌自动识别系统还采用的目标跟踪,以及识别结果佳化等方法,来确保从车流中一个一个地甄别出序列化的车牌。要实现对视频流进行逐帧识别,采用行之有效的高速识别算法,即神经网络算法和模糊算法相结合,否则无法达到实用的效果。对于常用的 768 X 288 高分辩率图像,大手控制车牌自动识别可以在 3 到 10 毫秒内完成的识别过程,并且在多个应用中实施了单台计算机多路的实时识别方案。传统车辆出入管理系统使用卡或票的技术,道闸车牌自动识别是的管理技术,也是目前、智能化的车辆出入管理技术。车牌识别不仅可以实现零耗材管理、解决丢失停车凭问题,而且可以明显提升车辆出入效率、减轻人员的劳动强度。大手控制率先将车牌识别技术融入传统的卡、票车辆管理系统中,有效克服车牌汉字识别不准问题,应用识别率可达 95%以上,且识别时间为 10ms。不仅保留了传统系统稳定、准确、实用的优点,而且提高了系统的工作效率,为管理者节约了时间和成本。带有车牌识别功能的车辆出入管理系统正在市场上迅速地普及,价值、意义很大。
车辆进出管理,在出入口安装车牌识别设备,记录车辆的牌照号,深入时间,结合自动门栏杆机的控制设备,实现车辆的自动化管理。它可以用在停车场,实现自动定时收费。它还可以自动计算可用停车位的数量并给出提示,实现停车费的自动管理,以节省人力,提高效率。智能小区的应用可以自动判断车辆是否进入本小区,并自动对非内部车辆进行自动计时收费。
贝叶斯分类器的特点是: 贝叶斯分类并不把一个对象对地指派给某一类,而是通过计算得出属于某一类的概率,具有大概率的类便是该对象所属的类; 一般情况下在贝叶斯分类中的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是的属性都参与分类; 贝叶斯分类对象的属性可以是离散的、连续的,也可以是混合的。 贝叶斯定理给出了小化误差的解决方法,可用于分类和预测。但在实际中,它并不能直接利用,它需要知道据的确切分布概率,而实际上我们并不能确切的给据的分布概率。因此我们在很多分类方法中都会作出某种假设以逼近贝叶斯定理的要求。 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。