南阳汽车闸门生产厂家
车牌的字符分割就是通过对车牌图像的预处理、几何校正等把字符从车牌图像中分割出来,分成一个个独立的字符,其输入是车牌定位后得到的车牌图像,输出是经过预处理、几何校正等后得到的一组单个的字符图像,并得到各个字符的点阵数据。字符识别是依次从单个字符点阵数据中提取字符特征数据,并给出识别结果。车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。
车牌识别系统可以在识别过程中比较数据,并与背景大数据中的可疑车辆进行比较。一旦确定,它可以自动报警并有效协助警察。同时,安装在社区和学校出入口的车牌识别器还可以自动识别内部和外部车辆,从而提高了社区、学校的安全性。
Sobel边缘检测还有另外一种形式,称为Isotropic Sobel算子,该算子具有各向同性的特征,利用加权平均算子,权值反比于邻点与中心点的距离,当沿着不同方向检测边缘时梯度幅度一致, 因此它的位置加权系数更准确,在检测不同方向上的边缘时梯度的幅度一致,但速度较一般Sobel算子要慢一些。 用于边缘检测的算子很多,常用的还有Laplacian边缘检测算子、Canny边缘检测算子等。
性及稳定性:硬识别系统:识别器采用TI 公司的高速DSP,双CPU控制,确保系统性和稳定性。软识别系统:软件识别,容易频繁出现死机等情况,需经常重新启动电脑,造成间断性系统瘫痪。智能算法模型硬识别系统:采用智能模糊点阵识别算法,准确率更高,识别率大于99.70%。很少需要人工干预。软识别系统:OCR/字型拓扑结构识别算法,会频繁出现误识别情况,准确率低于90%。需要人工不断输入纠正后的号牌。