阜新无感支付车牌识别生产厂家
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,只输出一个识别结果。车牌识别系统的关键技术及算法车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是唯一的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。
由于车牌识别设备一般都是安装在室外,且汽车车身不可能是完全整洁的、无污垢的,车牌上也可能存在泥点、污渍等杂质,因此采集到的图像中难免会存在一些噪声点。这些看似不起眼的噪声点或多或少的都会影响到定位的准确率。
车牌的字符分割就是通过对车牌图像的预处理、几何校正等把字符从车牌图像中分割出来,分成一个个独立的字符,其输入是车牌定位后得到的车牌图像,输出是经过预处理、几何校正等后得到的一组单个的字符图像,并得到各个字符的点阵数据。字符识别是依次从单个字符点阵数据中提取字符特征数据,并给出识别结果。车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜等信息,目前Z新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。