日照停车场升降柱供应厂家
牌照号码自动登记停车场管理人员每天都面对数百的车辆进出,一般由人工辨识车牌号码再输入管理系统,这种方式工作量大、容易疲劳误判。采用自动识别可以减少工作强度能够大幅度提高处理速度和效率,大大减少人力和财力。各种车牌的含义与标识大型汽车号牌:黄底黑字黑框线。中型(含)以上载客、载货汽车和专项作业车;半挂牵引车;电车。前号牌后号牌挂车号牌:黄底黑字黑框线。全挂车和不与牵引车固定使用的半挂车。前号牌后号牌
车牌系统的车牌切分模块利用了车牌文字的灰度、颜、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。这一算法有利于类似移动式稽查这种车牌图像噪声较大的应用。在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,字符识别的性。
车辆进出管理,在出入口安装车牌识别设备,记录车辆的牌照号,深入时间,结合自动门栏杆机的控制设备,实现车辆的自动化管理。它可以用在停车场,实现自动定时收费。它还可以自动计算可用停车位的数量并给出提示,实现停车费的自动管理,以节省人力,提高效率。智能小区的应用可以自动判断车辆是否进入本小区,并自动对非内部车辆进行自动计时收费。
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,只输出一个识别结果。车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是唯一的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。