长治停车场升降柱一套多少钱
Sobel边缘检测算子Sobel算子是根据邻域像素与当前像素的距离有不同的权值,强调中心像素的对边邻域像素对其的影响,而消弱4个对角近邻像素的作用。图像中每一个像素点这两个核做卷积,一个卷积核对图像垂直边缘响应大,而另一个则对水平边缘响应大,取两个卷积之中的大值作为该像素点的输出值。这样使得Sobel算子对噪声有抑制作用,因此不会出现很多孤立的边缘像素点,不过Sobel算子对边缘的定位不是很,图像的边界宽度往往不止一个像素,不适合对边缘定位准确性要求很高的应用。与Prewitt相似,Sobel算子也是通过像素平均来实现的,也有一定的抗噪能力。值得注意的是它们都不是各向同性的,所以它们检测出来的边缘并不是连通的,会有一定程度的断开。
车牌识别系统可以在识别过程中比较数据,并与背景大数据中的可疑车辆进行比较。一旦确定,它可以自动报警并有效协助警察。同时,安装在社区和学校出入口的车牌识别器还可以自动识别内部和外部车辆,从而提高了社区、学校的安全性。
对输入的彩图像进行灰度化处理:彩图像包含更多的信息,但是直接对彩图像进行处理的话,系统的执行速度将会降低,储存空间也会变大。彩图像的灰度化是图像处理的一种基本的方法,在模式识别领域得到广泛的运用,合理的灰度化将对图像信息的提取和后续处理有很大的帮助,能够节省储存空间,加快处理速度。边缘检测的方法是考察图像的像素在某个领域内灰度的变化情况,标识数字图像中亮度变化明显的点。图像的边缘检测能够大幅度地减少数据量,并且剔除不相关的信息,保存图像重要的结构属性。在实际的图像分割中,往往只用到一阶和二阶导数进行边缘检测,虽然,在原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶导数操作中就会出现对噪声敏感的现象,三阶以上的导数信息往往失去了应用价值。此外,二阶导数还可以说明灰度突变的类型,在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。为了减少二阶导数对噪声敏感,解决的办法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。
对车牌图像进行图像形态学操作由于成像系统、传输介质、记录设备等的不完善,以及天气情况的变化等,车牌图像往往受到多种噪声的污染。在经过二值化处理的车牌图像上,会出现一些与要研究的对象(即车牌区域)不相关的孤立点或者像素块,扰乱图像的研究对象,影响对车牌区域的提取、分割等操作。于是要构造一种有效抑制噪声的滤波器来有效的去除目标和背景中的噪声,同时,能够很好地保护车牌区域的形状、大小及特定的车牌纹理特征。 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。