潜江车行闸门供应厂家
车牌识别系统也是基于形态学操作的重要性质,对经过二值化后的车牌图像首行闭运算操作,使得车牌的字符区域连接起来,然后对车牌图像进行开运算操作,来消除车牌上的噪声,得到明亮的车牌区域从候选区域中去除伪车牌并定位出车牌区域 通过对车牌图像的数学形态学运算,图像中剩下少部分的连通区域,即为车牌的候选区域,这些区域包括车牌区域和伪车牌区域,为此,需要从图像中去除伪车牌并定位出车牌。首先,经过对白连通区域的轮廓进行处理得到矩形边界框,再根据我国车牌长宽比的特征,即44:14,考虑到在车牌定位过程中,由于对车牌的数学形态学操作会减少车牌信息以及拍摄所得到的车牌图像中车牌的倾斜等原因,取长宽阈值为2.0-6.0,这样就剔除了长宽比不符合条件的候选区域。 然后,由于对车牌图像的数学形态学操作会减少车牌信息,所以定位出的车牌区域会有可能小于车牌的实际区域,这时,我们就需要对定位出的车牌区域进行放大,在这里,我们对车牌区域进行放大的比例是120%,即对已经定位出的车牌候选区域的边界进行扩大。车牌由七个字符组成,在对候选区域对应的灰度化图像进行边缘检测二值化之后,正常情况下,车牌水平投影区域内每行的边缘点数要大于14,根据经验值,我们取15。在车牌水平投影区域内会出现较大的波峰,该波峰认为是车牌的上下边界,根据实验结果,要求波峰的始点和终点之差大于20小于120,从而得到车牌的上下边界。,根据二值化车牌图像中车牌的纹理特征信息,即在车牌区域范围内会出现明显的梯度变化特征,来确定车牌区域,定位出车牌。在二值化图像中,255代表车牌图像中的边缘信息,0代表非边缘信息。为了更加的定位出车牌和剔除伪车牌,需要对定位出的车牌区域进行筛选,有两个筛选条件,一个是在二值化图像中灰度值为255和灰度值为0的像素比大于0.25,另一个是二值化图像中灰度的跳变次数范围是[5,30]。
车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。车牌识别系统是指能够检测出可监控的车辆,并自动提取车牌信息进行处理的技术。车牌识别是现代智能交通系统的重要组成部分之一,应用广泛。它是基于数字图像处理、模式识别、计算机视觉等技术,对摄像头拍摄的车辆图像或视频序列进行分析,以获得每辆车唯一的车牌号来完成识别过程。
车牌识别进出停车场无需刷卡、无需停车,加快车辆进出场速度,避免拥堵,减少鸣笛噪音,省去了车主停车刷卡的步骤,节省了车主停车时间,同时也避免了车主因卡丢失、卡损坏需要换卡、补卡的烦恼。
Sobel边缘检测算子Sobel算子是根据邻域像素与当前像素的距离有不同的权值,强调中心像素的对边邻域像素对其的影响,而消弱4个对角近邻像素的作用。图像中每一个像素点这两个核做卷积,一个卷积核对图像垂直边缘响应大,而另一个则对水平边缘响应大,取两个卷积之中的大值作为该像素点的输出值。这样使得Sobel算子对噪声有抑制作用,因此不会出现很多孤立的边缘像素点,不过Sobel算子对边缘的定位不是很,图像的边界宽度往往不止一个像素,不适合对边缘定位准确性要求很高的应用。与Prewitt相似,Sobel算子也是通过像素平均来实现的,也有一定的抗噪能力。值得注意的是它们都不是各向同性的,所以它们检测出来的边缘并不是连通的,会有一定程度的断开。