湛江安全通道车牌识别一套多少钱
在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,字符识别的性。车牌识别结果决策模块识别结果决策模块,具体地说,决策模块利用一个车牌经过视野的过程留下的历史记录,对识别结果进行智能化的决策。其通过计算观测帧数、识别结果稳定性、轨迹稳定性、速度稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是继续跟踪该车牌,还是输出识别结果,或是拒该结果。这种方法综合利用了帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和性。
由于车牌识别设备一般都是安装在室外,且汽车车身不可能是完全整洁的、无污垢的,车牌上也可能存在泥点、污渍等杂质,因此采集到的图像中难免会存在一些噪声点。这些看似不起眼的噪声点或多或少的都会影响到定位的准确率。
识别速度:硬识别系统:整车车牌识别速度小于0.4秒,充分满足车流量大时的需要;软识别系统:整车车牌识别速度大于3秒,甚至更长,速度让人忍受。环境适应性硬识别系统:能在夜晚、阴天、雨天等各种光照条件下正常工作;软识别系统:上述条件下,甚至一天的不同时间内,识别准确率起伏很大。车速适应性:硬识别车牌识别系统:车速在0-120Km/H范围内均能稳定识别;应用范围广泛,高速公里使用该类设备。软识别车牌自动识别系统:车速大于40Km/H时,识别率急剧下降,现被引入停车场场系统中,有待进一步完善。
基于分类器的字符识别基于分类器的字符识别,是目前应用较广的一种车牌识别方式。其主要的思路是通过对样本数据的学,达到自动将数据分类到已知类型。分类器其实是一种数学模型,目前有很多类型的分类器,包括Bayes分类器、决策树模型、BP神经网络分类器等。 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是小错误率意义上的优化。