忻州汽车车牌识别生产厂家
车牌的字符分割就是通过对车牌图像的预处理、几何校正等把字符从车牌图像中分割出来,分成一个个独立的字符,其输入是车牌定位后得到的车牌图像,输出是经过预处理、几何校正等后得到的一组单个的字符图像,并得到各个字符的点阵数据。字符识别是依次从单个字符点阵数据中提取字符特征数据,并给出识别结果。车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。
在车牌的字符分割中,有许多因素会对车牌的字符分割造成影响,例如图像的噪声、车牌的定位不、字符的粘连、汉字的不连通等。本文介绍一种改进的水平投影算法,该算法能够克服这些因素造成的不良影响,并且能够准确的分割出车牌,为后续的识别做好准备。为了分割出相互独立的字符,对经过Otsu算法阈值化的灰度图进行分割。以下以改进的水平投影算法为例进行介绍:去除车牌字符的上下边界以外的区域。对灰度化的车牌图像从下向上逐行扫描,并统计出每行的像素值为 255 的像素的个数,当像素值为 255 的像素个数大于 7时(车牌有 7 个字符),认为寻找到车牌字符的下边界。同理,从上向下逐行扫描,能够寻找到车牌字符的上边界。去除车牌字符上下边界以外的区域。去除车牌字符上下边界之后,设车牌的高度为 height,宽度为 width。
Sobel边缘检测算子Sobel算子是根据邻域像素与当前像素的距离有不同的权值,强调中心像素的对边邻域像素对其的影响,而消弱4个对角近邻像素的作用。图像中每一个像素点这两个核做卷积,一个卷积核对图像垂直边缘响应大,而另一个则对水平边缘响应大,取两个卷积之中的大值作为该像素点的输出值。这样使得Sobel算子对噪声有抑制作用,因此不会出现很多孤立的边缘像素点,不过Sobel算子对边缘的定位不是很,图像的边界宽度往往不止一个像素,不适合对边缘定位准确性要求很高的应用。与Prewitt相似,Sobel算子也是通过像素平均来实现的,也有一定的抗噪能力。值得注意的是它们都不是各向同性的,所以它们检测出来的边缘并不是连通的,会有一定程度的断开。
判断汽车是否没有打开车门,或者所有汽车的外观识别都没有打开车门。只有汽车识别才有这样的问题,这可能是因为汽车的车牌号有关系。如果所有车辆在识别后未打开车门,则需要检查接线端子是否松动,是否有信号输出,检查车门的控制板,判断车门是否死机。如果发生故障,请关闭电源并重新启动。