安顺全自动车牌识别定制
车牌的字符分割就是通过对车牌图像的预处理、几何校正等把字符从车牌图像中分割出来,分成一个个独立的字符,其输入是车牌定位后得到的车牌图像,输出是经过预处理、几何校正等后得到的一组单个的字符图像,并得到各个字符的点阵数据。字符识别是依次从单个字符点阵数据中提取字符特征数据,并给出识别结果。车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。
基于特征统计匹配算法基于特征统计匹配算法主要原理是先提取输入模式的车牌字符统计特征,再按照一定的规则与所确定的决策函数进行分类判断。字符的统计特征包括像素块数、字符的轮廓数、轮廓的形状等。像素块是指二值化图像中上、下、左、右四个方向上相互连通的白素区域所组成的一个连通区域的像素块,由此可知,汉字字符的像素块大于1,英文字母和数字的像素块数是1。汉字的识别是将字符点矩阵看作是一个整体,根据每个字符的笔画特征点不同,将字符分解为横、竖、撇、捺等一种或几种的组合,经过统计从而得到相应的特征,接着再与字符库中的特征集进行匹配,获取输入字符的识别结果。在实际的应用中,由于外部原因造成了字符常常会出现模糊、倾斜等情况,导致了部分字符无法正确识别。
在一些单位,该应用还可以与车辆调度系统结合,自动客观地记录本单位车辆的车辆情况。车牌识别管理系统采用车牌识别技术提高进出效率。——自动放行,进入指定牌照信息输入系统,并自动读取车辆牌照,查询内部数据库。
对边缘检测后的灰度图进行二值化处理车牌图像经过边缘检测之后,车牌上的字符及边缘信息会突出出来,同时,其他非字符和非车牌边框的边缘纹理特征也突出了出来,为了减少噪声的影响,需要对车牌图像进行二值化处理,二值化是对图像进行阈值化的一种类型。根据阈值的选取情况,二值化的方法可分为全阈值法、动态阈值法和部阈值法,我们用大类间方差法(也称Otsu算法)进行阈值化,来剔除一些梯度值较小的像素,减少需要查找的车牌范围,二值化处理后车牌图像的像素值为0或者255。