惠州汽车闸门供应厂家
在车牌的字符分割中,有许多因素会对车牌的字符分割造成影响,例如图像的噪声、车牌的定位不、字符的粘连、汉字的不连通等。本文介绍一种改进的水平投影算法,该算法能够克服这些因素造成的不良影响,并且能够准确的分割出车牌,为后续的识别做好准备。为了分割出相互独立的字符,对经过Otsu算法阈值化的灰度图进行分割。以下以改进的水平投影算法为例进行介绍:去除车牌字符的上下边界以外的区域。对灰度化的车牌图像从下向上逐行扫描,并统计出每行的像素值为 255 的像素的个数,当像素值为 255 的像素个数大于 7时(车牌有 7 个字符),认为寻找到车牌字符的下边界。同理,从上向下逐行扫描,能够寻找到车牌字符的上边界。去除车牌字符上下边界以外的区域。去除车牌字符上下边界之后,设车牌的高度为 height,宽度为 width。
汽车牌照自动识别技术
它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
基于模板匹配的字符识别算法匹配就是将不同传感器或同一传感器在不同时间、不同成像条件下对同一景象获取的两幅或者多幅图像在空间上对准,或者根据已有模式在另一幅图像中寻找相应的模式。在遥感图像的处理时需要把不同波段传感器对同一事物的多光谱图像按照像点对应套准,然后根据像点的性质进行分类。如果在不同时间内对同一地面拍摄的两幅图像,经套准后找到其中特征有了变化的像点,就可以用来分析图中那些部分发生了变化,而利用放在一定间距处的两只传感器对同一物体拍摄得到两幅图片,找出对应点后可计算出物体离开摄像机的距离,即深度信息。一般的图像匹配技术是利用已知的模板和某种算法对识别图像进行匹配计算,从而判断图像中是否含有该模板的信息和获取坐标,车牌的字符匹配就是这种匹配技术。即车牌字符匹配的实现方式是计算输入模式的车牌字符与样本之间的相似性,取相似性大的样本为输入样本所属的类别。
通过对车牌图像的灰度处理、边缘检测、二值化、图像形态学操作定位出车牌的候选区域,接着利用车牌的特征,如长宽比、像素比等,从候选区域中定位出车牌车牌字符分割算法的研究车牌字符分割就是对已经定位出的车牌区域内的车牌字符进行分割,从而获取车牌上的字符,是车牌字符识别的前提和准备。车牌字符分割的好坏,直接影响到识别效果的好坏。在车牌识别系统中,由于车牌污染、背景复杂、光照不均匀、车牌发生倾斜、边框影响以及间隔符等因素影响,很难找到一种普遍使用的分割方法。